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Abstract—Edge artificial intelligence (AI) is expected to be
a central part of 6G, where servers located at the edge of
the network will support devices in performing inference using
machine learning (ML) models. However, providing latency
and accuracy guarantees needed by many 6G applications,
such as automated driving and robotics, is challenging due
to the black-box nature of ML models, the complexity of the
tasks, and the random wireless channel. This paper proposes
a novel framework leveraging conformal risk control to meet
requirements on the expected loss under a strict deadline. To
adapt to fluctuating channel conditions, our framework utilizes
an ensemble of black-box encoder/decoder models and inference
models of varying accuracy and complexity, and selects the model
expected to yield the most informative prediction under the
given requirements. We demonstrate the proposed framework
on a deadline-constrained image classification task under a
strict missed detection requirement. The results suggest that
the proposed framework provides the required performance
guarantees, making it a promising step toward achieving reliable
real-time edge AI services in 6G.

I. INTRODUCTION

Driven by the success of artificial intelligence (AI), edge AI
is expected to be a central component of 6G, where servers
located at the edge of the network will support devices in
performing inference and making decisions using machine
learning (ML) [1]. For instance, edge servers may assist
vehicles in performing image object detection in automated
driving, or execute reinforcement learning models to control
industrial robots. Such edge AI applications often operate
under strict performance and time constraints, requiring infer-
ence results to be both accurate and delivered before a specific
deadline with high probability.

Meeting these requirements involves trade-offs between
the quality of transmitted data representations (affecting ac-
curacy and uplink time), the computational complexity of
edge ML models (affecting accuracy and processing time),
and the size of the resulting predictions (affecting downlink
transmission). Several techniques have been proposed to op-
timize these trade-offs, relying on, e.g., split inference [2]–
[4] and over-the-air computing [5]. However, the analysis
of these techniques is typically based on oversimplified data
models, which rarely reflect practical settings, and rely on
white-box ML models and complex feature extraction at the
device. On the other hand, many practical ML models are
either inherently black-box or too complex for white-box
analysis. Furthermore, resource-constrained devices may not
be able to compute complex features, relying instead on
simple processing tools, such as image compression with
various quality settings. Compared to a fixed feature vector,

compression algorithms typically generate outputs of variable
lengths, which influence the transmission delay.

In this paper, we present a generalized framework for black-
box model selection that provides statistical guarantees on
the resulting end-to-end loss and latency, accounting for chal-
lenges such as random message lengths. Given a loss function
and a deadline, our framework jointly selects the transmission
quality, by choosing from an ensemble of available black-
box encoder/decoder pairs with varying complexities and
execution times, and the inference model, by choosing from
an ensemble of black-box ML models hosted on the edge
server (see Fig. 1).

To provide statistically sound end-to-end guarantees for
such black-box systems, our framework introduces a novel
approach that combines conformal risk control to meet the
loss requirement with non-parametric statistics to bound the
delay violation probability while considering the random
message lengths and channel conditions. The key idea behind
conformal risk control [6], [7] is to output a prediction set
rather than a single point estimate. Through careful calibra-
tion, conformal risk control aims to construct the smallest
prediction set such that the expected loss is bounded by a
predefined constant, thereby providing reliable predictions and
quantifiable uncertainty estimates. Conformal risk control has
previously been applied to various ML-based applications in
wireless communication [8]–[10]. In addition to the reliability
guarantees provided by conformal risk control, our framework
relies on order statistics derived from an unlabeled dataset
to obtain a distribution-free probabilistic bound on the joint
sizes of the encoded uplink message and the prediction
set resulting from applying conformal prediction to a given
model combination. This is then combined with the analytical
channel model to derive an end-to-end delay guarantee.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model and formalizes the prob-
lem statement. The proposed schemes are presented in Sec-
tion III and the numerical results are presented in Section IV.
Finally, the paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Scenario and Inference Model

We consider a deadline-constrained sensor connected wire-
lessly to an edge server (Fig. 1), operating in time frames of
duration T . In each frame t = 1, 2, . . ., the sensor observes
an input Xt ∈ X , which it offloads to the edge server for
inference. Associated with the input Xt is an unobservable
ground-truth label Yt ∈ Y , where Y is a discrete set of labels.
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Fig. 1. The considered scenario. The sensor encodes its input Xt using a selected encoder as Mt = el(Xt) and transmits it to the edge server. The server
decodes the message as Zt = dl(Mt) using the corresponding decoder and performs inference using a selected inference model, fk . The model outputs
fk(Zt) are then aggregated into a prediction set Γ(Xt) = fk(Zt), which must be transmitted back to the sensor before the deadline.

We assume that (Xt, Yt) are drawn independently from an
unknown joint distribution PXY .

The sensor uses one of L encoders pairs el : X → {0, 1}∗
to map input Xt to a message Mt = el(Xt) of (variable)
length Dul,l(Xt) = |Mt| bits, which it transmits to the
edge server. The edge server decodes the message using the
corresponding decoder dl : {0, 1}∗ → Z into an intermediate
representation Zt = dl(Mt) ∈ Z . Zt serves as a common
input representation for all subsequent edge inference models
(e.g., a reconstructed image or a feature vector). The l-th en-
coder/decoder pair has a deterministic total computation time
τul,l, comprising both encoding and decoding but excluding
transmission delay, and offers a trade-off between message
size, computing time, and representation quality.

The edge server performs inference on the received Zt.
Similar to the encoder/decoder configuration, we assume that
the edge server performs inference using one of K pre-trained,
black-box inference models {fk}Kk=1. Each inference model
fk : Z → R|Y|, k = 1, . . . ,K, takes the representation Zt ∈
Z as input (regardless of the encoder/decoder pair used for
transmission) and outputs a confidence score [fk(Zt)]y ∈ R of
each label y ∈ Y , e.g., using the softmax activation function.
The k-th model has a fixed computation time τfk . Typically, a
model with a longer computation time is expected to produce
better predictions, but this may not always be the case. In
practice, the models may be implemented as different scales
of the same architecture, each with a different number of
layers, neurons, etc. [11]. However, we emphasize that our
proposed framework is agnostic to the specific architecture of
the underlying ML models, treating them effectively as black-
box models.

For the selected edge model fk, the edge server constructs a
prediction set Γ(Xt) ⊆ Y by applying an aggregation function
ζ to the confidence scores produced by the selected model:

Γ(Xt) = ζ (fk(Zt)) .

Note that the prediction set Γ(Xt) contains a set of labels
rather than a single point estimate. For instance, ζ could select
a certain number of labels with the largest confidence scores,
or all labels with a score greater than some threshold. In
general, ζ controls the trade-off between coverage (i.e., the

probability that it contains a the ground-truth) and informa-
tiveness (i.e., the size of the prediction set). Note that Γ(Xt)
is a random subset of Y that depends on the random input Xt

through Zt.
We assume that each predicted label y ∈ Γ(Xt) occupies

Dlbl bits, so that the size of the prediction set is

Ddl,l,k(Xt) = |Γ(Xt)|Dlbl (bits).

Since each label may include metadata such as bounding box
coordinates, depth estimates, textual descriptions, etc., Dlbl

can potentially span from a few bits to several hundred bytes
depending on the application.

B. Communication Model
We consider a Rayleigh block-fading channel, in which the

channel gain remains constant throughout the transmission and
changes independently between transmissions. The communi-
cation rate in the uplink is then given by

Rul,t = B log2
(
1 + |hul,t|2SNR

)
(bits/s), (1)

where B is the bandwidth in Hz, hul,t ∼ CN (0, 1) is the
instantaneous uplink channel gain in frame t, and SNR is
the average signal-to-noise ratio (SNR), which is known to
both the sensor and the edge server. We assume that the
instantaneous channel gain is revealed to the sensor after
the encoder/decoder pair has been selected (e.g., estimated
using pilot signals), so that only the statistics of Rul,t can be
used to select the encoder/decoder. The total duration of the
observation transmission can then be computed as

Tul,t = τul,l +
Dul,l(Xt)

Rul,t
, (2)

where for simplicity we neglect the impact of protocol over-
head.

Similar to the uplink, the rate in the downlink is

Rdl,t = B log2
(
1 + |hdl,t|2SNR

)
(bits/s), (3)

so that the edge inference and downlink transmission time can
be computed as

Tdl,t = τfk +
Ddl,l,k(Xt)

Rdl,t
. (4)

As in the uplink, we assume that the instantaneous rate cannot
be used to select the edge model fk. However, we will also



consider a variant of the problem, detailed in Section III-E,
where knowledge of the supported rate can be used to truncate
the prediction set Γ(Xt) to fit within the frame.

C. Problem Statement

The prediction quality is characterized by a loss function
ℓ(Γ(Xt), Yt). For technical reasons, we assume that the loss
can never increase by enlarging Γ(Xt), and that it is upper
bounded by some constant γ. Note that these conditions are
satisfied for many common loss functions, such as the 0-1 loss
and the missed detection probability. Using this, we define the
risk-adjusted loss ℓ′, which assigns a loss of ℓ whenever the
deadline is met and is otherwise equal to γ, i.e.,

ℓ′ (Γ(Xt), Yt) =

{
ℓ(Γ(Xt), Yt), if Ttot,t ≤ T,

γ, otherwise,
(5)

where Ttot,t = Tul,t + Tdl,t is the round-trip inference
duration.

Our goal is to jointly select the encoder/decoder, the edge
inference model, and the aggregation function ζ that achieve
the most informative (i.e., smallest) prediction set Γ(Xt)
while having an expected risk-adjusted loss of at most α.
Specifically, we aim to solve

minimize E [|Γ(Xt)| | Ttot,t ≤ T ] , (6a)
s.t. E [ℓ′ (Γ(Xt), Yt)] ≤ α, (6b)

where the expectations are over (Xt, Yt) ∼ PXY and
hul,t, hdl,t ∼ CN (0, 1).

Solving Problem (6) optimally is generally challenging
since PXY is unknown. Instead, we assume access to labeled
and unlabeled calibration datasets. The labeled dataset is
denoted by D and contains ND samples drawn independently
and identically distributed (i.i.d.) from PXY , i.e.,

D = {(X(D)
n , Y (D)

n )}ND
n=1, (X(D)

n , Y (D)
n )

i.i.d.∼ PXY . (7)

Similarly, the unlabeled dataset, denoted by U , contains NU
input samples drawn i.i.d. from the marginal input distribution,
PX , of PXY and independently from D:

U = {X(U)
n }NU

n=1, X(U)
n

i.i.d.∼ PX . (8)

Utilizing these datasets, we seek a model selection procedure
that satisfy the loss requirement on unseen samples drawn
from PXY , while minimizing the prediction set size.

III. END-TO-END CONFORMAL MODEL SELECTION

This section presents a general framework for jointly op-
timizing the choice of encoder/decoder and inference models
to solve Problem (6). The framework operates in four steps:
1) We first separate Constraint (6b) into distinct loss and

frame deadline requirements;
2) We employ conformal risk control to define the aggregation

function ζ, calibrating it on a specific dataset for each com-
posite encoder/decoder and inference model combination
to satisfy the new loss requirement;

3) Given the calibrated aggregation function ζ, we compute
the probability that each model meets the frame deadline

and discard the model combinations that do not satisfy the
requirement;

4) Finally, we estimate the expected prediction set size of
each remaining model combination and select the one that
maximizes the expected informativeness.

A. Constraint Separation

We decompose Constraint (6b) into separate loss and frame
deadline requirements that can be addressed individually,
while ensuring that satisfying the separate requirements is
a sufficient condition for satisfying the original constraint.
To simplify the notation, let ℓ = ℓ (Γ(Xt), Yt), ℓ′ =
ℓ′ (Γ(Xt), Yt), T≤T = Ttot,t ≤ T , and T>T = Ttot,t > T .
The risk-adjusted loss in Eq. (5) can then be bounded as

E [ℓ′] = E [ℓ | T≤T ] Pr(T≤T ) + γ Pr(T>T )

= E [ℓ] + (γ − E [ℓ | T>T ]) Pr(T>T )

≤ E [ℓ] + γ Pr(T>T ),

where the equality is obtained by substituting
E [ℓ|T≤T ] Pr(T≤T ) = E [ℓ] − E [ℓ|T>T ] Pr(T>T ) using
the law of total expectation and rearranging, and the
inequality follows since (γ−E [ℓ|T>T ]) is upper bounded by
γ.

To ensure that Constraint (6b) is satisfied, it is sufficient
to require E [ℓ] + γ Pr(T>T ) ≤ α. This can be achieved by
bounding the first and second terms by δα and (1 − δ)α,
respectively, for any 0 ≤ δ ≤ 1. This gives us the separate
loss and frame deadline requirements

E [ℓ (Γ(Xt), Yt)] ≤ δα, (9)

Pr(Ttot,t > T ) ≤ (1− δ)α

γ
, (10)

which are sufficient conditions for Constraint (6b). δ controls
the trade-off between the expected loss E [ℓ (Γ(Xt), Yt)] and
the scaled deadline violation probability γ Pr(Ttot,t > T ).

B. Bounding the Expected Loss using Conformal Risk Control

In this section, we use conformal risk control [7] to design
the aggregation function ζ such that the requirement in Eq. (9)
is satisfied. Conformal risk control belongs to the conformal
prediction framework [6], which provides model-agnostic,
distribution-free statistical guarantees of ML model predic-
tions. The central idea is to use a threshold-based aggregation
function

ζ (fk(Zt)) = {y ∈ Y : [fk(Zt)]y ≥ 1− λ} , (11)

and then carefully calibrate the confidence score threshold
λ for each combination of an encoder/decoder and an edge
inference model using the calibration dataset D. To this end,
we define the composite model comprising encoder/decoder
pair (el, dl) and edge inference model fk as

gl,k(X) = fk (dl (el(X))) , (12)

for all l = 1, 2, . . . , L and k = 1, 2, . . . ,K, and denote the
confidence score threshold for composite model gl,k as λl,k.
The following lemma shows how to select λl,k to satisfy
E[ℓ(Γλl,k,l,k(X), Y )] ≤ ε.



Lemma 1 (Conformal risk control [6], [7]): Let D be
defined as in Eq. (7), and let Γλ,l,k(x) denote the prediction
set constructed on input x using the aggregation function in
(11) for a composite model gl,k with the threshold λ. Suppose
the loss function ℓ satisfies

ℓ(Γλ2,l,k(x), y) ≤ ℓ(Γλ1,l,k(x), y) ≤ γ

for all (x, y) and λ1 ≤ λ2, and for some finite γ. The threshold

λl,k=inf

{
λ :

1

ND

ND∑
n=1

ℓ(Γλ,l,k(X
(D)
n ), Y (D)

n )≤ε− γ−ε
ND

}
,

(13)
then satisfies

E(X,Y )∼PXY

[
ℓ
(
Γλl,k,l,k(X), Y

)]
≤ ε.

Selecting the thresholds based on Eq. (13) with ε = δα
thus ensures that Eq. (9) is met for all model combinations.
Note that this approach of calibrating each model combination
is necessary since the intermediate representations can vary
significantly between different encoder/decoder pairs. Conse-
quently, a calibration that works well for one encoder/decoder
pair might be ineffective for another, necessitating individual
calibration of each gl,k. However, because the number of
model combinations is typically small and calibration is
performed offline, this approach remains practical.

C. Bounding the Deadline Violation Probability

The technique presented in Section III-B allows us to
guarantee that Constraint (9) is satisfied. In this section, we
consider the problem of satisfying Constraint (10). Besides
the model execution times, the round-trip delay of a given
composite model depends on the random length of the mes-
sage produced by the encoder, the size of the prediction set
given the threshold obtained in Section III-B, and on the
instantaneous uplink and downlink channels.

Bounding Eq. (10) is challenging due to the unknown,
potentially dependent message length Dul,l(Xt) and predic-
tion set size |Γ(Xt)|. For instance, a long message may be
more likely to produce a small prediction set, or vice versa.
On the other hand, the channel rates can be characterized
analytically. Borrowing ideas from conformal risk control,
in this paper we propose a technique to bound the end-to-
end delay violation probability that uses the unlabeled dataset
U to statistically bound the random message length and the
prediction set size, and then combines these bounds with the
analytical characterization of the channel rates. The resulting
bound is presented in Proposition 1, and can be computed
after the thresholds λl,k have been determined as outlined in
Section III-B.

Proposition 1 (Delay violation bound): Consider a com-
posite model gl,k as defined in Eq. (12). Let σul,l and σdl,l,k
be index permutations that order the unlabeled dataset U based
on the size of the uplink and downlink data, respectively, i.e.,

Dul,l(X
(U)
σul,l(1)

) ≤ . . . ≤ Dul,l(X
(U)
σul,l(NU )),

Ddl,l,k(X
(U)
σdl,l,k(1)

) ≤ . . . ≤ Ddl,l,k(X
(U)
σdl,l,k(NU )).

The delay violation probability is then upper bounded as

Pr (Ttot,t>T |gl,k) ≤ min
n,m∈{1,...,NU}

1−eβ̄cal(n,m)
(

n+m
NU+1−1

)
,

where

β̄cal(n,m) =
1

2SNR

(
1− 2

D̄ul,l(n)+D̄dl,l,k(m)

B(T−τul,l−τfk)

)
, (14)

and

D̄ul,l(n) = Dul,l(X
(U)
σul,l(n)

), (15)

D̄dl,l,k(m) = Ddl,l,k(X
(U)
σdl,l,k(m)), (16)

are the n-th and m-th order statistics of {Dul,l(X
(U)
n )}NU

n=1

and {Ddl,l,k(X
(U)
n )}NU

n=1, respectively.
Proof: See Appendix A.

Computing the delay violation bound in Proposition 1 of
each composite model gl,k with the thresholds determined in
Section III-B enables us to discard the models that do not
satisfy Constraint (10). The remaining models are guaranteed
to satisfy the original Constraint (6b), and our final task is to
select the best among those, which we consider next.

D. Informativeness Maximization and Model Selection

Once we have identified the set of models that satisfy
Constraint (6b), we select the model for execution that
maximizes the expected informativeness as specified by the
objective in Eq. (6a). Since the conditional expectation in
(6a) is hard to compute, we heuristically select the valid
model gl,k (i.e., satisfying the bound from Proposition 1)
with the minimum unconditional average prediction set size
Γ̄l,k = 1

NU

∑NU
n=1 |Γλl,k,l,k(X

(U)
n )| estimated on U . The com-

plete procedure is summarized in the algorithm below.

1: function MODELSELECTION
2: Initialize g∗ ← NULL; λ∗ ← 0; Γ̄∗ ←∞; P̄ ∗ ←∞.
3: for l = 1, 2, . . . , L do
4: for k = 1, 2, . . . ,K do
5: Define Γλ,l,k(X) = {y ∈ Y : [gl,k(X)]y ≥ 1− λ}.
6: Compute λl,k for Γλ,l,k using Lemma 1 with D and ε=δα.
7: Compute P̄l,k as the bound in Prop. 1 using U and λl,k.
8: Γ̄l,k ← 1

NU

∑NU
n=1 |Γλl,k,l,k(X

(U)
n )|.

9: if (P̄l,k ≤ (1− δ)α/γ and Γ̄l,k < Γ̄∗)
or (P̄l,k ≥ (1− δ)α/γ and P̄l,k < P̄ ∗) then

10: g∗ ← gl,k; λ∗ ← λl,k; Γ̄∗ ← Γ̄l,k; P̄ ∗ ← P̄l,k.
11: return (g∗, λ∗).

Note that, if none of the models satisfy Constraint (6b), we
pick the model with the smallest delay violation probability.
Furthermore, while the computational complexity might be
significant when ND and NU are large, the procedure is
intended to be computed offline as it only relies on the average
SNR.

E. Channel-Aware Prediction Set Truncation

Until now, we have assumed that the prediction set is
selected only based on thresholding. However, if the instan-
taneous downlink channel rate Rdl,t is known at the server,
the prediction set can be truncated to guarantee that it can



TABLE I
MODELS USED IN THE NUMERICAL RESULTS

Encoder/decoder, (el, dl) Quality setting Execution time, τul,l

WebP-0, (e1, d1) 0 10.0 ms
WebP-20, (e2, d2) 20 12.5 ms
WebP-50, (e3, d3) 50 15.0 ms
WebP-80, (e4, d4) 80 17.5 ms

Classifier model, fk Num. parameters Execution time, τdl,k

EfficientNetV2-S, f1 22M 24.0 ms
EfficientNetV2-M, f2 54M 57.0 ms
EfficientNetV2-L, f3 120M 98.0 ms

be delivered before the deadline. In such case, the edge
server model may truncate the prediction set generated by
the selected model gl,k to contain at most

Γ̃t = max
(
1,
⌊
Rdl,t(T−τul,l−τfk−Tul,t)

Dlbl

⌋)
,

so that the resulting prediction set is given as

Γ(Xt)=
{
y∈Y : [gl,k(Xt)]y≥1−λl,k, y∈topΓ̃t

(gl,k(Xt))
}
,

where topΓ̃t
(gl,k(Xt)) are the Γ̃t labels with the largest

confidence scores. While the impact of truncation on the
average set size (6a) varies, it never violates the risk constraint
(6b), as it can only prevent deadline misses (which incur
maximum loss γ).

IV. NUMERICAL RESULTS

Scenario: We demonstrate the proposed framework on an
image classification task using the EfficientNetV2 [11] clas-
sifier models on the edge server pre-trained on the ImageNet
2012 dataset. The encoders/decoders are implemented using
the WebP [12] image compression algorithm with various
quality settings (see Table I). We evaluate the system on the
ImageNet validation dataset comprising 50000 images of 1000
classes [13]. The dataset is randomly split into three disjoint
sets for calibration (ND = 10000 labeled and NU = 10000
unlabeled) and evaluation (30000 labeled). We consider the
0-1 missed detection loss ℓ(Γ(X), Y ) = 1[Y /∈ Γ(X)],
i.e., γ = 1, with requirement α = 0.02 and deadline
T = 150 ms. Each predicted label y ∈ Y is assumed to occupy
Dlbl = 64 bits, and the bandwidth is 30 MHz. Throughout,
we set δ = 1/2.

Baselines: We compare our proposed scheme to a small and
a large fixed model policy. The small baseline model com-
prises the WebP-0 encoder/decoder and the EfficientNetV2-S
classifier, i.e., g1,1, while the large baseline model is defined
by WebP-80 and EfficientNetV2-L, i.e., g4,3. For each model,
we consider top-20 and calibrated threshold-based aggregation
presented in Section III-B.

Results: Figure 2 shows that our proposed schemes (solid
blue and green) almost always meet the loss requirement
α = 0.02, except for very low SNR, where none of the
model combinations satisfy the requirement. Consequently,
the framework selects the model predicted to have the lowest
delay violation probability, which still results in an average
loss exceeding α. Both fixed models with top-20 aggregation
(solid orange and purple) fail to meet the requirements. The
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Fig. 2. Average loss (top) and prediction set size (bottom) vs. SNR.

small fixed calibrated model (dashed orange) meets the loss,
but with a much larger average prediction set size at high SNR.
The large fixed calibrated model (dashed purple) provides a
smaller prediction set, but only satisfies the loss requirement at
high SNR due to longer transmission and execution times. On
the other hand, the prediction set size of the proposed models
decrease steadily as the SNR increases while satisfying the
loss requirement as desired. Prediction set truncation (dashed
blue line) provides only a small benefit as uplink transmission
delay dominates the total execution time.

V. CONCLUSION

In this paper, we present a framework for reliable real-
time edge AI under strict loss and deadline requirements. We
assume that the sensor and edge server have access to an
ensemble of black-box encoder/decoder and inference models
with various complexities and execution times. Using ideas
from conformal risk control, we propose a model selection
scheme that aims to maximize the informativeness of the
predictions under bounded loss and deadline violation prob-
ability. Through numerical results of an image classification
scenario, we demonstrate that the proposed framework meets
the requirements while minimizing the average size of the
prediction sets. This suggests that the proposed framework
is a promising direction toward achieving reliable and timely
edge AI services in 6G.

APPENDIX
PROOF OF PROPOSITION 1

Let Dul,t = Dul,l(X) and Ddl,t = Ddl,l,k(X) where X ∼
PX . Then, for any D′

ul,t, D
′
dl,t ≥ 0,

Pr(Ttot,t > T | gl,k)
(a)
= 1−

∫∞
0

∫∞
0

Pr(Ttot,t ≤ T |Dul,t = ξ,Ddl,t = ψ, gl,k)

× p(Dul,t = ξ,Ddl,t = ψ | gl,k) dξ dψ



(b)

≤ 1−
∫D′

ul,t

0

∫D′
dl,t

0
Pr(Ttot,t≤T |Dul,t=ξ,Ddl,t=ψ, gl,k)

× p(Dul,t = ξ,Ddl,t = ψ | gl,k) dξ dψ
(c)

≤ 1− Pr(Ttot,t ≤ T |Dul,t = D′
ul,t, Ddl,t = D′

dl,t, gl,k)

×
∫D′

ul,t

0

∫D′
dl,t

0
p(Dul,t=ξ,Ddl,t=ψ|gl,k) dξ dψ

(d)
= 1− Pr(Ttot,t ≤ T |Dul,t = D′

ul,t, Ddl,t = D′
dl,t, gl,k)

× Pr(Dul,t ≤ D′
ul,t, Ddl,t ≤ D′

dl,t | gl,k). (17)

Here, (a) follows from the law of total probability, and (b)
follows from the non-negativity of the CDF. Step (c) is due to
the fact that Pr(Ttot,t ≤ T |Dul,t, Ddl,t, gl,k) is nonincreasing
in Dul,t and Ddl,t, and (d) is obtained by noting that the
integral evaluates to the joint CDF.

We proceed to establish a lower bound on Pr(Ttot,t ≤
T |Dul,t, Ddl,t, gl,k). For any 0 ≤ ϕ ≤ T ,

Pr(Ttot,t ≤ T |Dul,t, Ddl,t, gl,k)

= Pr(Tul,t + Tdl,t ≤ T |Dul,t, Ddl,t, gl,k)

≥ Pr(Tul,t ≤ T − ϕ, Tdl,t ≤ ϕ |Dul,t, Ddl,t, gl,k)

= Pr(Tul,t≤T−ϕ|Dul,t, gl,k) Pr(Tdl,t≤ϕ|Ddl,t, gl,k),
(18)

where the inequality follows from the fact that Tul,t and Tdl,t
are conditionally independent given Dul,t, Ddl,t, gl,k, and that
Tul,t is independent of Ddl,t, while Tdl,t is independent of
Dul,t. Expanding the terms first using (2) and (4), and then
using (1) and (3) while using that |hul,t|2 and |hdl,t|2 are
exponentially distributed yields

Pr(Tul,t ≤ T − ϕ |Dul,t, gl,k) Pr(Tdl,t ≤ ϕ |Ddl,t, gl,k)

= Pr
(
Rul,t ≥ Dul,t

T−ϕ−τul,l

∣∣∣Dul,t

)
Pr
(
Rdl,t ≥ Ddl,t

ϕ−τfk

∣∣∣Ddl,t

)
= exp

(
1−2

Dul,t
B(T−ϕ−τul,l)

SNR

)
exp

(
1−2

Ddl,t
B(ϕ−τfk

)

SNR

)

= exp

(
2−2

Dul,t
B(T−ϕ−τul,l) −2

Ddl,t
B(ϕ−τfk

)

SNR

)
, (19)

Setting ϕ = (Dul,tτfk +Ddl,t(T − τul,l))/(Dul,t+Ddl,t), and
substituting this into (19) gives

Pr(Ttot,t ≤ T |Dul,t, Ddl,t, gl,k)

≥ exp

(
1

2SNR

(
1− 2

Dul,t+Ddl,t
B(T−τul,l−τfk

)

))
. (20)

Next, we bound Pr(Dul,t ≤ D′
ul,t, Ddl,t ≤ D′

dl,t | gl,k) in
(17). This quantity does not have an analytical expression, as
it depends on the black-box encoder/decoder models (el, dl),
the edge model fk, and the unknown distribution PX . Instead,
we bound it using the unlabeled dataset U . By the inclusion-
exclusion principle,

Pr(Dul,t ≤ D′
ul,t, Ddl,t ≤ D′

dl,t | gl,k)
≥ Pr(Dul,t≤D′

ul,t|gl,k) + Pr(Ddl,t≤D′
dl,t|gl,k)−1. (21)

Conditioned on the threshold λl,k and the model choice
gl,k, the marginal data size samples {Dul,l(X

(U)
n )}NU

n=1 and
{Ddl,l,k(X

(U)
n )}NU

n=1 are each a collection of independent

samples drawn from the marginal distributions p(Dul,t | gl,k)
and p(Ddl,t | gl,k), respectively. Thus, the data sizes Dul,t and
Ddl,t of a new sample drawn from PX are equally likely to
fall anywhere between the samples in the dataset, i.e.,

Pr(Dul,t ≤ D̄ul,l(n) | gl,k) =
n

NU + 1
,

Pr(Ddl,t ≤ D̄dl,l,k(m) | gl,k) =
m

NU + 1
,

for any integers n,m ∈ {1, . . . , NU}, where D̄ul,l(n) and
D̄dl,l,k(m) are defined as in Eqs. (15) and (16) (see, e.g., [6,
Appendix D]). Combining this result with Eq. (21) yields

Pr(Dul,t ≤ D̄ul,l(n), Ddl,t ≤ D̄dl,l,k(m) | gl,k)
≥ n

NU+1 + m
NU+1 − 1

= n+m
NU+1 − 1. (22)

for any n,m ∈ {1, . . . , NU}.
The proof is completed by inserting (20) and (22) into

(17) with D′
ul,t = D̄ul,l(n) and D′

dl,t = D̄dl,l,k(m), defining
β̄cal(l, k, n,m) as in Eq. (14), and choosing n and m such
that the bound is minimized.
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