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Abstract—Generative AI, such as diffusion models, faces
challenges in real-time applications such as Extended Reality
(XR) due to heavy computation and strict deadlines. Standard
“compute-then-send” offloading often fails over dynamic wireless
channels. We propose a progressive latent refinement strategy
that leverages the iterative nature of diffusion models. The core
of our solution is a tractable, analytical rate-distortion model,
derived from the model’s forward process, that predicts the
final quality of any intermediate sample. This model drives a
dynamic, online scheduling policy to intelligently selects which
intermediate samples to transmit and at what rates. Simulation
results show that our policy significantly outperforms baselines,
delivering substantially higher sample quality at the deadline.

I. INTRODUCTION

Generative Artificial Intelligence (AI), and in particular
diffusion models [1], [2], are expected to play a central role
in emerging 6G applications, such as Extended Reality (XR),
where they will support real-time content creation, rendering,
and denoising [3]–[5]. Due to their heavy computational de-
mands, diffusion models typically necessitate offloading their
execution to edge servers. However, the long computation
time of diffusion models combined with the stringent latency
constraints of real-time interactive applications leaves little
time for communicating the initial request (e.g., a prompt) and
the final result. This poses a significant challenge for practical
deployments, where the communication delay is subject to
dynamic fluctuations in the wireless channel.

The majority of existing work on real-time edge AI has
focused on efficient inference tasks, such as optimizing up-
link transmission for split inference or semantic communica-
tion [5]–[7]. Works addressing the offloading of generative
models, conversely, have primarily adopted a “compute-then-
send” approach, where the full, high-fidelity output is gener-
ated at the edge before being transmitted [3], [5], [8]. This
sequential process, however, is highly susceptible to network
fluctuations and ill-suited for interactive applications, as a
single, momentary deep channel fade can cause a missed dead-
line. Other approaches use diffusion to denoise channel noise,
but do not address scheduling [9]. Separately, the concept
of successive refinement and progressive transmission [10]
has been applied to edge AI to adaptively balance latency,
rate, and perception under time constraints. These strategies
ensure that an intermediate result arrives by the deadline,
even in poor channel conditions. However, the application of
progressive techniques has been largely limited to the uplink
feature transmission problem in split inference [11] or to
general computational tasks [12].
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Fig. 1. Sequential vs. progressive strategies for generative AI. (a): The
traditional “compute-then-send” approach risks missing the deadline. (b):
Our progressive scheme enables parallel communication and computation
by transmitting delta-encoded intermediate results while the server generates
further refinements. This ensures that a useful, intermediate result (in this
case xt) is delivered on time.

In this paper, we propose a progressive refinement strategy
for diffusion models that leverages their iterative structure
(see Fig. 1). We develop two key components: 1) a novel
delta-encoding scheme that exploits inter-sample correlation
for aggressive, low-distortion quantization, and 2) a tractable
online decision policy to select which samples to transmit.
The policy’s core is a novel, fully analytical rate-distortion
model, derived from the diffusion model’s forward process,
that predicts the final distortion for any intermediate iteration
and quantization rate. This model allows the policy to mini-
mize the expected distortion at the deadline by dynamically
balancing immediate transmission against waiting for future
refinements. Simulations demonstrate significant gains in per-
ceptual quality at the deadline compared to standard baselines.

II. SYSTEM MODEL

A. Communication and Timing Model

We consider a deadline-constrained generative AI system
where a mobile device (e.g., running an XR application) is
connected to an edge server via a wireless link. The server’s



task is to generate and communicate back to the device a
latent sample x0 ∈ RM ∼ p(x0|s) based on an input s from
the device, such as a text prompt for an image generation
task. This latent sample can then be transformed into a
final representation, such as a high-resolution image, using
a lightweight decoder at the device, such as the decoder of
a Variational Autoencoder (VAE) [2]. The server employs a
T -step Latent Diffusion Model (LDM) to iteratively generate
the sample x0 from initial noise xT , as detailed in Section III.
We assume that time is divided into discrete slots, where one
slot has a duration equal to the execution time of a diffusion
step. The system operates under a strict deadline of Td slots,
by which a final, usable latent vector must be available at
the device. We assume that the target latent samples x0 are
normalized, i.e., (1/M)E[∥x0∥22] = 1, which is common in
practical diffusion models.

The wireless link is modeled as a K-subchannel Rayleigh
block-fading channel, with each sub-channel comprising ℓ
symbols per slot. The total number of bits that can be
communicated in slot n, denoted Rn, is given as

Rn = ℓ

K∑
j=1

log2

(
1 +

pn,jgn,j
N0Ws

)
,

where Ws is the subchannel bandwidth, pn,j and gn,j are the
transmission power and channel gain of subchannel j in slot
n, respectively, and N0 is the noise power spectral density.
The channel gains are independent and identically distributed
as gn,j ∼ Exp(1/Γ), where Γ is the average channel gain.

We assume perfect channel state information at the trans-
mitter, allowing for optimal power control via waterfilling to
maximize the rate [13]. Given the total power constraint P ,
the optimal power allocated to each subchannel is

pn,j =

(
1

λ
− N0Ws

gn,j

)+

,

where (x)+ = max(0, x) and λ is the Lagrange multiplier
chosen to satisfy the total power constraint

∑K
j=1 pn,j = P .

The input s transmitted in the uplink has a fixed size of Bs

bits and occupies the first Tul slots, given as

Tul = min
{
Nul ∈ N :

∑Nul

i=1 Ri ≥ Bs

}
.

Upon receiving s, the server begins the diffusion process in
slot Tul + 1. Since each diffusion step takes one slot, the
intermediate sample xt becomes available in the beginning of
slot Tul + T − t+ 1. We denote the index of the most recent
sample at the server at the beginning of slot n by t(n), i.e.,

t(n) = T −min
(
T, (n− Tul − 1)

+
)
.

To maximize the quality of the sample at the device at the
deadline, the server can progressively transmit intermediate
samples xt to the device before the final sample x0 is fully
generated. To enhance compression, intermediate samples are
delta-encoded relative to the most recent sample successfully
reconstructed at the device (detailed in Section III). The
number of slots required to transmit sample xt, encoded into

B bits, starting from slot n is

Tdl(n,B) = min
{
Ndl ∈ N :

∑Ndl

i=1 Rn+i−1 ≥ B
}
.

B. Decision Problem Formulation

We formulate the problem of deciding which intermediate
samples to transmit and at what rate as an online scheduling
problem. The server executes a policy π at the beginning of
each time slot n ∈ {1, . . . , Td}. The possible actions are:

• an = TRANSMIT(b): Transmit the most recently gener-
ated sample xt(n) quantized to b ∈ B bits per dimension,
where B is a set of predefined quantization rates. The
resulting total transmission size is then B = Mb bits
(we neglect the overhead required to encode the choice
of b). This action is only available if the diffusion model
has started (t(n) < T ) and if the channel is idle. The
transmission will occupy the channel for Tdl(n,B) slots.

• an = WAIT: Do not transmit and wait for the next slot.
If a transmission is ongoing at the beginning of slot n or
t(n) = T , the only possible action is an = WAIT.

Since the TRANSMIT(b) action involves quantization, we
will denote by x̂t the reconstructed version of the latent vector
xt. Furthermore, let ŷn ∈ {x̂t}Tt=0 denote the most recent
sample successfully decoded by the device by the end of slot
n. We assume the device and server have shared randomness,
so the initial noise state xT is identical, and the reconstructed
version is lossless, i.e., x̂T = xT . The device’s initial state
is thus ŷ0 = x̂T , and this remains the state until the first
downlink transmission is successfully decoded.

The objective of the policy π is to choose the sequence of
actions {an}Td

n=1 that minimizes the expected mean squared
error (MSE) distortion between the latent sample available
at the device at the deadline Td, denoted ŷTd

, and the final,
clean sample x0 that would be available with infinite time and
bandwidth. This can be formalized as:

min
π

(1/M)E
[
∥ŷTd

− x0∥22
]
, (1)

where the expectation is taken over the random channel real-
izations, the diffusion process, and the input data distribution
for s. Note that, by minimizing the MSE in the latent space,
we are directly optimizing for a quantity intended to map
to high quality of the final, decoded sample, such as the
perceptual quality of a generated image.

III. LATENT REFINEMENT CODING FOR DIFFUSION
MODELS

In this section, we present the proposed latent refinement
coding scheme for diffusion models. We first provide a brief
summary of LDMs and then present the coding scheme.

A. Latent Diffusion Models

An LDM generates a sample x0 from a distribution p(x0|s)
by reversing a gradual noising process, and consists of a fixed
forward process and a learned reverse process [1], [2].

The forward process is defined as a discrete Markov chain

xt =
√
αtxt−1 +

√
1− αtεt−1,



for t = 1, 2, . . . , T , where εt−1 ∼ N (0, I), and αt ∈ (0, 1)
is a constant set by a noise schedule. This process gradually
transforms any x0 into noise xT ∼ N (0, I) as T → ∞. A
central property is that xt can be expressed in terms of x0 [1]:

xt =
√
ᾱtx0 +

√
1− ᾱtεt, (2)

where ᾱt =
∏t

i=1 αi. As assumed in the system model, x0 is
normalized, and thus (1/M)E[∥xt∥22] = 1 for all t.

The reverse process p(xt−1|xt, s) iteratively denoises a
sample xT to generate x0. As the true reverse poste-
rior is intractable, it is approximated by a learned process
pθ(xt−1|xt, s). This is typically accomplished by training a
neural network εθ(xt, t, s) to predict the noise εt from xt in
Eq. (2). The reverse process pθ(xt−1|xt, s) is then simulated
as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t, s)

)
+

√
β̃tε

′, (3)

where ε′ ∼ N (0, I) and β̃t =
1−ᾱt−1

1−ᾱt
(1−αt). This allows the

model to generate a new clean sample x0 ∼ p(x0|s) by recur-
sively sampling xT−1, . . . ,x0 starting from xT ∼ N (0, I).

B. Latent Refinement Coding of Diffusion Samples

To minimize expected distortion at the deadline, we propose
to progressively transmit intermediate latent vectors xt. This
strategy ensures a usable sample is delivered by the deadline
even if poor channel conditions preclude transmitting the final
x0, while also allowing gradual perceptual improvement for
interactive applications.

Transmitting the full latent vector xt at each update is
highly inefficient as the iterative generation process creates
strongly correlated samples. Instead, we propose a predictive
coding scheme that transmits only the refinement (or “delta”).
This refinement is computed as the difference between the
current sample xt and the previously reconstructed sample
x̂tp , which is available at both the server and device:

δt,tp = xt − x̂tp . (4)

the refinement is then quantized to bt bits per dimension,
δ̂t,tp = Qbt(δt,tp), and transmitted to the device. Given the
quantized refinement δ̂t,tp , the device can reconstruct the next
latent vector x̂t from its current one, x̂tp , as

x̂t = x̂tp + δ̂t,tp . (5)

Since the raw refinements δt,tp are generally small, they can
be compressed significantly while keeping the distortion low.

The central problem is to construct a quantizer Qbt(·) for
the refinements δt,tp that achieves the best rate-distortion
tradeoff. However, rigorous analysis of the statistics of δt,tp

is intractable due to its dependency on the quantized version
of the previous sample, x̂tp . Thus, to proceed we assume the
quantization error is small and negligible, i.e., x̂tp ≈ xtp . This
assumption, which we validate in Section V, allows us to
model the statistics of the current refinement independently
of potential error propagation from previous refinements.
Unfortunately, the statistical properties of the approximated
refinement δt,tp ≈ xt − xtp remain analytically intractable,

as its distribution depends on tp − t reverse diffusion steps,
which are computed using the neural network εθ(·).

To create a tractable model, we leverage the insight that the
learned reverse process pθ(xt−1|xt, s) is trained to approxi-
mate the true (but intractable) reverse posterior. We therefore
propose to use the analytical properties of the forward process
as a tractable approximation to model the statistics of the
refinements generated by the reverse process.

To do this, we leverage the property of the forward process
that for any tp > t, xtp can be expressed as a noised version
of xt [1]:

xtp =

√
ᾱtp√
ᾱt

xt +

√
ᾱt − ᾱtp√

ᾱt
ε′,

where ε′ ∼ N (0, I). By rearranging, we obtain an exact
expression for xt in terms of xtp within the forward process:

xt =

√
ᾱt√
ᾱtp

xtp −
√

ᾱt − ᾱtp√
ᾱtp

ε′. (6)

We now use this ideal relationship as a tractable approxima-
tion for the statistics of the actual learned reverse diffusion
process pθ(xt−1|xt, s). Equation (6) suggests that the refine-
ment δt,tp can be approximated as

δt,tp ≈
√
ᾱt√
ᾱtp

xtp −
√

ᾱt − ᾱtp√
ᾱtp

ε′ − xtp

=

( √
ᾱt√
ᾱtp

− 1

)
xtp −

√
ᾱt − ᾱtp√

ᾱtp

ε′,

where the approximation becomes an equality if the learned
reverse process pθ(xt−1|xt, s) perfectly matches the true (but
intractable) reverse posterior p(xt−1|xt, s). It follows that
the conditional distribution of the refinement δt,tp given xtp

is approximately Gaussian with mean µt,tp
and covariance

σ2
t,tp

I , where

µt,tp
=

( √
ᾱt√
ᾱtp

− 1

)
xtp , σ2

t,tp
=

ᾱt − ᾱtp

ᾱtp

. (7)

This allows us to define a standardized refinement zt,tp as

zt,tp =
δt,tp − µt,tp

σt,tp

≈
√

ᾱtp√
ᾱt − ᾱtp

(
(xt − xtp)−

( √
ᾱt√
ᾱtp

− 1

)
xtp

)

=

√
ᾱtp√

ᾱt − ᾱtp

(
xt −

√
ᾱt√
ᾱtp

xtp

)
.

Inserting our forward process approximation for xt from (6)
yields zt,tp ≈ −ε′. Thus, under our model, the complex, state-
dependent refinement δt,tp can be transformed into a simple,
state-independent Gaussian variable, zt,tp ∼ N (0, I).

Based on this result, we define the quantizer Qbt(·) as a
function of a base scalar quantizer Qbase,bt(·):

Qbt(δt,tp) = σt,tpQbase,bt

(
δt,tp − µ̂t,tp

σt,tp

)
+ µ̂t,tp

,

where µ̂t,tp
=
(√

ᾱt/ᾱtp − 1
)
x̂tp is computed using the



reconstructed vector x̂tp , and Qbase,bt(·) is a scalar quantizer
designed for the standard Gaussian distribution N (0, I) using
bt bits per dimension, e.g., using Lloyd’s algorithm [14]. We
assume that base quantizers Qbase,b(·) for each rate in b ∈ B
are precomputed offline for a standard Gaussian distribution
and shared between the server and device a priori.

The resulting algorithm can be implemented efficiently:
1) Server: Computes µ̂t,tp

, σt,tp , and the normalized
zt,tp = (δt,tp − µ̂t,tp

)/σt,tp . It then applies the base
quantizer ẑt,tp = Qbase,bt(zt,tp) and transmits the bits
for ẑt,tp .

2) Device: Having x̂tp , it re-computes the exact same
µ̂t,tp

and σt,tp . Upon receiving ẑt,tp , it performs the
denormalization δ̂t,tp = σt,tp ẑt,tp + µ̂t,tp

.
This scheme simplifies the complex, state-dependent quanti-
zation of δt,tp to the static quantization of a standard Gaussian
variable, allowing a single codebook for Qbase,bt(·) to be used
regardless of t and tp.

IV. DYNAMIC SCHEDULING POLICY

In this section, we develop a scheduling policy π to solve
the distortion minimization problem in Eq. (1). Solving the
problem optimally is computationally intractable due to the
large state and action spaces. Instead, we develop a heuristic,
online policy that relies on the analytical properties of the
diffusion model. We first present a latent distortion model,
a communication latency model, and finally formulate the
proposed policy.

A. Latent Distortion Model

To guide the policy, the server must predict the distortion
resulting from a given action. We define the total distortion
Dtotal(t, tp, b) as the MSE between the reconstructed x̂t and
the final clean sample x0, i.e.,

Dtotal(t, tp, b) =
1

M
E
[
∥x̂t − x0∥22

∣∣∣ tp, b
]
.

We approximate this as the sum of the diffusion distortion
Ddiff(t) = (1/M)E[∥xt−x0∥22] and the quantization distortion
Dquant(t, tp, b) = (1/M)E[∥x̂t −xt∥22], assuming that the two
errors are uncorrelated:

Dtotal(t, tp, b) ≈ Ddiff(t) +Dquant(t, tp, b). (8)

We first model the inherent diffusion distortion Ddiff(t) by
again taking advantage of the tractable forward process. From
Eq. (2), we have xt−x0 = (

√
ᾱt− 1)x0+

√
1− ᾱtεt. Since

x0 and εt are uncorrelated and εt has zero mean, the distortion
is

Ddiff(t) ≈ (1/M)E[∥(
√
ᾱt − 1)x0 +

√
1− ᾱtεt∥22]

=
1

M

(
(
√
ᾱt − 1)2E[∥x0∥22] + (1− ᾱt)E[∥εt∥22]

)
.

Using the assumption that (1/M)E[∥x0∥22] = 1 and
(1/M)E[∥εt∥22] = 1, this simplifies to:

Ddiff(t) ≈ (ᾱt − 2
√
ᾱt + 1) + (1− ᾱt)

= 2(1−
√
ᾱt). (9)

Next, we model the quantization distortion Dquant(t, tp, b).
From Eqs. (4) and (5), the quantization error is simply the
error in quantizing the refinement

x̂t − xt = x̂tp +Qb(δt,tp)− (x̂tp + δt,tp)

= Qb(δt,tp)− δt,tp .

Thus, the quantization distortion is given as

Dquant(t, tp, b) = (1/M)E[∥Qb(δt,tp)− δt,tp∥22]
= (1/M)σ2

t,tp
E[∥Qbase,b(zt,tp)− zt,tp∥22]

= σ2
t,tp

Dbase(b), (10)

where Dbase(b) = E[(Z − Qbase,b(Z))2] is the per-dimension
distortion for Z ∼ N (0, 1). This quantity can be approximated
in the high-rate regime using the Panter-Dite formula [15]:

Dbase(b) ≈ 2−2bπ
√
3

2
.

For the initial transmission (tp = T ) from x̂T , we define
σ2
t,tp

= 1, yielding Dquant(t, T, b) ≈ Dbase(b), while for refine-
ments we use the expression from Eq. (7). If no transmission
has yet occurred, the device holds x̂T = xT , and the total
distortion is Dtotal(T, T,∞) = Ddiff(T ).

B. Communication Latency Model

Besides predicting the distortion, the policy must also be
able to predict the latency cost of a TRANSMIT(b) action.
The number of slots Tdl(n,B) required to transmit B bits is
a random variable, depending on future channel realizations.
A simple point estimate T̂ = B/E[Rn] is insufficient for a
deadline-constrained system, as it provides no guarantee of
completion. Instead, we model the q-th quantile of the latency,
Tq , representing the time by which the transmission will be
complete with probability q.

Since the number of subchannels K is large, by the central
limit theorem, the rate Rn in any given slot is approximately
Gaussian, Rn ∼ N (R̄, σ2

R). The total bits supported by N

slots, SN =
∑N

i=1 Ri, is thus also approximately Gaussian:

SN ∼ N (NR̄,Nσ2
R).

The quantile latency Tq can thus be obtained by solving
Pr(STq ≥ B) = q, which is equivalent to

1− Φ

(
B − TqR̄√

TqσR

)
= q,

where Φ(·) is the Gaussian cumulative distribution function.
By rearranging and substituting x =

√
Tq , Tq can be esti-

mated by solving the following quadratic equation for x:

R̄x2 +
(
Φ−1(1− q)σR

)
x−B = 0, (11)

and setting T̂q =
⌈
x2
⌉
.

To find the ergodic rate R̄ = E[Rn] and variance σ2
R,

we use the assumption that K is large to replace empirical
averages over subcarriers with statistical expectations [13].
First, we find the waterfilling cutoff level γ0 = λN0Ws

by numerically solving the total power constraint P =

KEg

[(
N0Ws

γ0
− N0Ws

g

)+]
given the Rayleigh distribution



g ∼ Exp(1/Γ). Given the solution γ0, the ergodic rate R̄
is computed by integrating the channel capacity

R̄ = ℓKEg

[
log2

(
1 +

1

N0Ws

(
1

λ
− N0Ws

g

)+

g

)]

=
ℓK

Γ

∫ ∞

γ0

log2

(
g

γ0

)
e−(1/Γ)gdg.

The variance σ2
R = E[R2

n] − R̄2 can be found similarly by
numerically computing E[R2

n].

C. Policy Formulation

We now formulate the scheduling policy based on the
distortion and latency models. An optimal policy is computa-
tionally intractable because the value of any action depends on
all future states, and instead we therefore develop a heuristic,
online policy. However, since a WAIT action provides no
immediate improvement, a simple myopic policy of just
comparing the TRANSMIT(b) action to WAIT is insufficient as
it would always favor transmission. The value of waiting is to
allow the server to compute a more refined sample for a later
transmission. Our policy models this non-trivial tradeoff. At
any slot n where t(n) < T and the channel is free, our policy
performs a lookahead to compare the two dominant strategies
of transmitting either once or twice before the deadline.

Let Dtotal(t, tp, b) be the estimated distortion from Eq. (8)
and T̂q(B) be the approximated latency quantile from Eq. (11)
for B = Mb bits. Let tp denote the index of the most recent
sample successfully decoded by the device (e.g., tp = T at the
beginning). We treat the quantile q as a fixed hyperparameter.
The two evaluated strategies are:

1) Strategy 1 (Optimal Single Transmission): This strat-
egy models the “wait-then-send” approach. By search-
ing all possible wait times τ ∈ {0, 1, . . . , Td−n} (where
τ = 0 means transmit now), it finds the best possible
distortion D∗

1 achievable by transmitting a single sample
xt(n+τ) with quantization rate bmax

τ before the deadline.
Specifically, it computes

D∗
1 = min

τ∈{0,...,Td−n}
Dtotal(t(n+ τ), tp, b

max
τ ),

where bmax
τ ∈ B is the maximum feasible quantization

rate such that n+ τ + T̂q(Mbmax
τ ) ≤ Td.

2) Strategy 2 (Optimal Dual Transmission): This strat-
egy models the “send-and-refine” progressive approach.
It computes the best possible distortion D∗

2 achievable
by transmitting the current sample xt(n) immediately
with quantization rate b, followed by a transmission of
a future refinement at time n+ T̂q(Mb) + τ ′:

D∗
2 = min

b∈B
min
τ ′

Dtotal(t(n+ T̂q(Mb) + τ ′), t(n), bmax
τ ′ ),

where τ ′ ∈ {0, . . . , Td − n− T̂q(Mb)} and bmax
τ ′ ∈ B is

the maximum quantization rate satisfying n+T̂q(Mb)+
τ ′ + T̂q(Mbmax

τ ′ ) ≤ Td.
Let τ∗ denote the optimal wait time from Strategy 1 and b∗ the
optimal quantization rate from Strategy 2. If D∗

2 ≤ D∗
1 , the

server executes TRANSMIT(b∗). If D∗
1 < D∗

2 and τ∗ = 0,

the policy executes action TRANSMIT(bmax
0 ); otherwise, if

D∗
1 < D∗

2 and τ∗ > 0, it executes WAIT. This policy captures
the central tradeoff between transmitting immediately versus
waiting for higher-quality refinements, and is computationally
tractable as its overhead is negligible compared to a diffusion
step, since it only requires searching over a small, one-
dimensional space of wait times and quantization levels.

V. NUMERICAL RESULTS

A. Experimental Setup

We evaluate our policy using a pre-trained Stable Diffusion
v1-5 model [2] that generates images based on an input text
prompt. This model operates on an M = 64 × 64 × 4-
dimensional latent space, with a VAE decoder to map the
latent vector to a 512×512×3-dimensional image. The reverse
process uses T = 50 steps, and we set a strict system deadline
of Td = 60 time slots. The uplink prompt size is fixed to Bs =
8192 bits. The wireless link consists of K = 60 subchannels,
each with ℓ = 70 downlink symbols/slot (corresponding to
approximately 5 ms in a typical 5G setting with a symmetric
uplink/downlink split), and we evaluate across a range of
average channel SNRs, defined as SNR = PΓ/(N0Ws). The
policy’s latency model Eq. (11) uses a q = 0.9 quantile
target, and we fix the set of possible quantization levels to
B = {3, 4, 8, 10, 16}, where 16 bits/dimension corresponds to
lossless (i.e., Dquant(t, tp, 16) = 0). We generate the results
using 500 prompts drawn from the DiffusionDB dataset [16].

The quality of the sample delivered at the deadline is quan-
tified using two metrics: latent MSE (1/M)E[∥ŷTd

− x0∥22],
which our policy aims to minimize (Eq. (1)), and the LPIPS
score [17], which measures the perceptual quality of the
decoded image. We compare our policy against two baselines:

• Persistent-Q: A naive progressive scheme that transmits
every new sample xt (or as fast as the channel allows)
using a fixed bitrate of bfix bits/dim.

• Final-Only: Waits until the server computes x0 (at slot
Tul+T +1). It then transmits x0 using the lossless b0 =
16-bit representation.

B. Performance Evaluation

We first validate the accuracy of our latent distortion
models, which are the fundamental components of our policy.
Figure 2 shows the predicted distortions from Eqs. (9) and (10)
against the simulated results. As shown in Fig. 2a, our Ddiff(t)
model captures the decreasing trend of the true, simulated
latent distortion, although with a slight offset. Furthermore,
this figure also plots the final image’s pixel-space distortion
(as 1/PSNR), which almost perfectly tracks the empirical
latent distortion Ddiff. This suggests that minimizing the
latent-space error is a valid proxy for maximizing the final
perceptual quality. The quantization distortion (Fig. 2b) ac-
curately predicts the trend, especially at low-to-mid bitrates.
The simulated results flatten at high bitrates (e.g., b ≥ 8),
which we attribute to our model’s forward-process Gaussianity
assumption not perfectly matching the learned reverse process.
In both cases, the discrepancies are expected and highlight the



0 20 40
10−6

10−4

10−2

100

Iteration, t

D
is

to
rt

io
n

Ddiff(t) (ana.)
Ddiff(t) (sim.)

PSNR (sim.)

(a) Diffusion distortion

2 4 6 8 10 12 14
10−9

10−7

10−5

10−3

10−1

Quantization bits, b

D
q
u
a
n
t
(t
,t

p
,b
)

t = 30, tp = 50 (ana.)
t = 30, tp = 50 (sim.)
t = 20, tp = 30 (ana.)
t = 20, tp = 30 (sim.)

(b) Quantization distortion

Fig. 2. Validation of the analytical distortion models.

approximation inherent in using the forward process to model
the learned reverse process. Yet, as Fig. 3 will show, these
models are highly effective for policy decisions.

Figure 3 shows the final sample quality at the device at
the deadline versus the average channel SNR. Figure 3a plots
the latent MSE (the objective our policy directly minimizes),
while Fig. 3b shows the resulting perceptual quality. Our
policy significantly outperforms all baselines in the low-to-
mid SNR range. The ’Final-Only’ baseline fails completely
until the SNR reaches approximately 21 dB, as the few slots
remaining after generation (Td − (Tul + T )) are insufficient
for the large, lossless transmission. In contrast, our policy
selects a lower-quality but transmissible sample, guaranteeing
a usable result by the deadline and achieving significant gains.
This demonstrates that our analytical distortion models are
sufficiently accurate to guide the policy toward effective deci-
sions. At high SNR, our policy results in a slightly larger latent
MSE than ’Persistent-Q (8 bit)’, which we attribute to approx-
imation errors in our analytical framework and the simplified
policy. However, its equivalent perceptual quality (LPIPS)
confirms that this discrepancy is perceptually negligible. This
combined performance across SNRs demonstrates our policy’s
adaptability to channel conditions and its effectiveness in
using latent MSE as a proxy to optimize for perceptual quality,
which is the key end-user metric for generative models.

VI. CONCLUSION

We have proposed a novel framework for deadline-aware
generative AI over wireless links, centered on a progressive
latent refinement strategy. The core of our solution is a
tractable, analytical rate-distortion model, derived from the
diffusion model’s forward process. This model enables a
dynamic scheduling policy to predict the quality of interme-
diate samples without empirical characterization. Simulation
results confirmed the accuracy of our rate-distortion model
and demonstrated that our proposed policy significantly out-
performs baselines in terms of both achieved distortion and
perceptual quality at the deadline.
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